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What are digital signatures?

A digital signature (DS) scheme on classical messages consists of
the following algorithms:
• KeyGen(1λ): Generates a secret key sk and a verification key

vk.
• Sign(sk, µ) : Outputs a signature σ for µ using sk.
• Verify(vk, µ′, σ′): Verifies whether σ′ is a valid signature for µ′

using vk and correspondingly outputs ⊤/ ⊥.

Digital signatures have many crucial applications such as in email
certification, online transactions, and software distribution.
Fortunately, DS for classical messages can be constructed from
OWFs 1.

1Rompel, J., 1990, April. One-way functions are necessary and sufficient for
secure signatures.
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Can We Sign Quantum Messages?

• Unlike in the classical setting, authentication of quantum
message necessitates encryption 2.
• Any verification algorithm should obtain the message.
• This implies public-verifiability is impossible!
• In other words, signing quantum messages is impossible 3

(even under computational assumptions).

2Barnum, H., Crépeau, C., Gottesman, D., Smith, A. and Tapp, A., 2002,
November. Authentication of quantum messages.

3Alagic, G., Gagliardoni, T. and Majenz, C., 2021. Can you sign a quantum
state?.
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Informal Idea

|σ⟩
Verifyvk−−−−→ |µ⟩ ∼ |µ′⟩

Verify†vk−−−−→ |σ′⟩.



A Partial Solution: Signcryption

• Every user generates a pair of public-key encryption keys.
• If Alice wants to sign a message to Bob, she uses Bob’s public

encryption key to first encrypt the message.
• No public-verifiability as only Bob can validate the signature.

Is quantum authentication with public-verifiablity achievable?

Yes, it is!
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Our Solution

Our solutions is to add a time-dependence to the signature scheme.

We sample a key pair (sk, vk)← C.KeyGen(1λ) for a classical DS.
Signing a quantum message is as follows Q.Sign(sk, |µ⟩) :

1. Sample a key k for a one-time symmetric authenticated
encryption scheme on quantum messages (Q.Enc,Q.Dec).

2. Classically sign the current time and key
σ ← C.Sign(sk, (t, k)).

3. Output ρ := Q.Enck(|µ⟩) and a time-lock puzzle
Z := TLP(1, (k , t, σ)).
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Verify(vk, (ρ,Z )) :
1. Take note of the current time t′.
2. Compute (k , t, σ)← Solve(Z ).
3. Check that t+ 0.5 ≥ t′ and CS.Verify(vk, (t, k), σ) = ⊤.
4. Output Q.Deck(ρ′).



Why the Impossibility Does Not Apply

|σ⟩
Verifyvk−−−−→ |µ⟩ ∼ |µ′⟩

Verify†vk−−−−→ |σ′⟩.
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Disadvantage

The problems with our scheme:
1. The signature expires i.e. you cannot reuse it after a while.
2. Time-lock puzzles are a heavy computational assumption that

have only been constructed in the QROM.



Solution: Dynamic Verification Keys

By utilizing verification keys that evolve over time, we eliminate the
need for TLPs in our construction. The idea is quite simple:

• For each time interval [ti−1, ti ), we use a different key ki .
• To sign |µ⟩ at time � ∈ [ti−1, ti ), simply output Q.Encki (|µ⟩).
• At time � : ti , we announce ki .
• To verify a message received at time � ∈ [ti−1, ti ), we store

the signature state and wait for announcement of ki . (During
this time ki is still hidden).

• This leads to signatures from OWFs with dynamic verification
keys.
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Applications

We leverage time-dependent signatures with dynamic keys to
achieve the following objectives, relying solely on OWFs:
• Authenticated Quantum Public Keys: We design a public-key

encryption scheme featuring authenticated quantum
public-keys that resist adversarial tampering.

• Public-Key Quantum Money: We construct a time-dependent
public-key quantum money scheme.
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Alternative Solution: Bounded Quantum Storage Model

• In this model, an adversary A is limited with respect to its
quantum memory.
• A is never restricted with respect to its computational power

or classical memory.
• Our result: We build information-theoretically secure

signatures for quantum messages in this model (no time
dependence or computational assumptions required).



Why the Impossibility Does Not Apply



Thanks for listening!


